On a conjecture about monomial Hénon mappings

نویسندگان

  • Zeraoulia Elhadj
  • J. C. Sprott
چکیده

A monomial Hénon mapping is defined as the wellknown two-dimensional Hénon map with the quadratic term replaced by a monomial. This paper introduces a conjecture about monomial Hénon mappings: Even Hénon mappings are chaotic and odd Hénon mappings are not chaotic in the first quadrant of the bifurcation parameter space. This conjecture is based on numerical simulations of this type of map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the Global Langlands Conjecture Erez

The theory of base change is used to give some new examples of the Global Langlands Conjecture. The Galois representations involved have solvable image and are not monomial, although some multiple of them in the Grothendieck group is monomial. Thus, it gives nothing new about Artin's Conjecture itself. An application is given to a question which arises in studying multiplicities of cuspidal rep...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

A combinatorial proof of the Eisenbud-Goto conjecture for monomial curves and some simplicial semigroup rings

We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary monomial curves. In addition to this, we show that the conjecture holds for certain simplicial affine semigroup rings.

متن کامل

Stanley Decompositions and Partionable Simplicial Complexes

We study Stanley decompositions and show that Stanley’s conjecture on Stanley decompositions implies his conjecture on partitionable Cohen-Macaulay simplicial complexes. We also prove these conjectures for all Cohen-Macaulay monomial ideals of codimension 2 and all Gorenstein monomial ideals of codimension 3.

متن کامل

Rigorous Numerical Models for the Dynamics of Complex Hénon Mappings on Their Chain Recurrent Sets

We describe a rigorous and efficient computer algorithm for building a model of the dynamics of a polynomial diffeomorphism of C on its chain recurrent set, R, and for sorting points into approximate chain transitive components. Further, we give explicit estimates which quantify how well this algorithm approximates the chain recurrent set and distinguishes the chain transitive components. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013